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Many researchers have noted how children's whole number schemes can interfere with their

efforts to learn fractions. This paper examines the persistence of whole number schemes

among 14 year-old students who appear to have successfully mastered routine algorithms

for working with fractions. Uncovering whole number thinking among such students is

therefore difficult, and is illustrated through the use of several probing interview tasks,

revealing quite different forms of whole number thinking. These forms of thinking can give

correct answers also making it difficult for teachers to identify incorrect thinking about

fractions. Representations of fractions using number lines can assist in identifying and

correcting such thinking.

Hunting (1986), Streefland (1984), Bezuk (1988) and Kieren (1980a; 1980b) have

suggested that difficulties experienced by children solving rational number tasks arise 

because rational number ideas are sophisticated and different from natural number ideas 

and that children have to develop the appropriate images, actions and language to precede 

the formal work with fractions, decimals and rational algebraic forms.

The research reported above has focused quite properly on difficulties experienced by 

young children when they first encounter rational numbers. Relatively, little research has 

taken place with older students. Like Hannula (2003), this paper focuses on difficulties 

with fractions experienced by older students. Many of these students appear still to use 

whole number thinking which Behr, Wachsmuth, Post and Lesh (1984) defined as “making 

separate comparisons of numerators and denominators using the ordering of whole 

numbers” (p. 332). Hart (1981) also notes that “a fraction of course involves two whole 

numbers which have to be dealt with as if they were irrevocably linked” (p.69). The ratio 

between numerator and denominator is, according to Hart (1981), the “irrevocable” link.

This research reported in this paper was conducted during 2002 and 2003 as a part of a 

professional development program SINE (Success In Numeracy Education) designed to 

assist teachers of mathematics in Years 5-8 (with students from 11 to 14 years of age). The 

Fraction component of SINE consists of two Fraction Interviews and two Screening Tests

(Pearn & Stephens, 2002a; 2002b; 2002c; 2003). 

An initial Fraction Interview (Pearn & Stephens, 2002a) was developed to ascertain 

students’ knowledge and/or their misunderstandings about fractions. The authors decided it 

was imperative that teachers use an interview that would enable them to observe and 

interpret their students’ actions as they worked on a set of tasks set in a variety of fraction

contexts. From a student’s verbal and non-verbal behaviour, an interviewer can infer 

something about the student’s internal representations, thought processes, problem–solving

methods, or mathematical understandings. The Fraction Interview tasks included contexts 

such as discrete items, continuous lengths, fraction walls, and number lines.

Because some teachers expressed concern about the time taken to administer the 

Fraction Interview, a paper-and-pencil Fraction Screening Test was designed with tasks

that paralleled the Fraction Interview tasks, wherever possible, including contexts such as

discrete items, continuous lengths, fraction walls, and number lines.
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Developing a First Probing Interview for Fractions 

Given the poor performance of some Year 7 and 8 students on particular items of the

Fraction Screening Tests, we looked for evidence of thinking strategies that had lead to 

these poor results. While paper-and-pencil tests show patterns of strengths and weaknesses, 

they generally fail to disclose the kinds of thinking used by students, and their “peculiar”

algorithms, that sometimes give correct answers. 

We conjectured that inappropriate whole number thinking strategies were being 

commonly applied to fraction problems. For example, during a video-taped interview 

(Pearn & Stephens, 2002) Robert, a Year 7 student, who otherwise showed sound 

conceptual and procedural understanding of the fraction tasks, involving for example,

addition of fractions and equivalent fractions, gave an unexpected explanation. When 

asked why he had decided that 
2

3
 was larger than

3

5
, Robert said: “From two to three

(comparing numerators) is one and from three to five (comparing denominators) is two, so 
2

3
 is bigger than

3

5
”. Robert’s explanation is an instance of whole number dominance as

Behr et al. (1984) define it. In other instances of “whole number dominance”, students 

typically calculated the difference or ‘gap’ between numerator and denominator to 

compare fractions. Between the 2 and the 3 in 
3

2
, for example, they said the ‘gap’ is 1,

while
5

3
 has a ‘gap’ of 2, making

3

2
 the larger. Whole number thinking includes other 

strategies where students deal with numerators and denominators individually, ignoring the 

ratio connecting numerator and denominator. By contrast, we define multiplicative thinking

as those strategies which preserve the fundamental ratio between numerator and 

den

thinking about

frac

ons, placing simple fractions on a number line, and matching

frac

ssfully completed these

wer A k s as follo :

ominator.

We looked for evidence of inappropriate whole number thinking among secondary 

students who had been taught fractions for at least the previous four years. A Probing 

Fraction Interview (Pearn & Stephens, 2003) was designed to investigate

tions among twelve students in Year 8 (14 years old). It had three parts: 

Part A: Nine baseline tasks including recognition and completion of equivalent

fractions, ordering fracti

tions with decimals.

Part B: Four questions intended to disclose inappropriate whole number thinking 

Part C: Four scenarios for students to critique inappropriate whole number thinking

Parts A and B were given to all students. Only if students succe

e they given Part C. An example of a Part tas i ws

Point to the cards with pairs of fractions:
5 3

22

4

1

8 3

12

3

2

Inte e pairs of fractions are equivalent? (Pause for response.) 

is larger?” After the student responded, the 

inte

rviewer: Which of thes

How did you decide?

In Part B, tasks included completing equivalent fractions, deciding on the input 

required for a given output from a “fraction machine”, and choosing the larger of two 

fractions. For example, the interviewer pointed to two cards, one showing three-fifths and 

the other two-thirds, and asked: “Which

rviewer asked: “How did you decide?”
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The scenarios of Part C used actual student responses embodying inappropriate whole

number thinking. The scenarios asked students to identify the misunderstanding used by

the student and where possible to give an example which would help the student in the 

scenario. One such scenario presented “Robert’s thinking” as described earlier. A second 

scenario had “Jennifer”, comparing
3

5
 and 

3

2
, arguing that 

3

5
 must be larger because it has

a larger numerator and denominator than
2

3
. After being given these scenarios, students

were asked: “Do you agr r?” and “Can you think 

of a

nifer’s scenario, one student replied that “this 

ee with the way this student got the answe

n example that you could use to explain why this method does not always work?”

Results from the Probing Interview 

The students interviewed using the Probing Fraction Interview fell into three distinct

groups. The first group, Proficient multiplicative thinkers, not only used algorithms

correctly and efficiently in dealing with fractions, but were able to deal confidently with 

fractions of discrete sets and of continuous quantities. Most importantly, these students 

were able to challenge inappropriate whole number thinking and could provide convincing 

counter examples. Presented with Jen

(thinking) would lead you to say that 
8

4
 was greater than

2

1
, - which we know are the 

same. Jennifer’s method doesn’t work.” 

A second group may be called Residual whole number thinkers. These students used 

algorithms correctly to represent fractions in a range of equivalent forms. They were 

generally confident in dealing with fractions of discrete sets, but not surprisingly confused 

a fraction number with a fractional part of the number line when the line was longer than 

one unit, as reported by Hannula (2003) and Novillis-Larson (1980). However, these 

students tended to revert to inappropriate whole number thinking when faced with new or

unf

en numerator and denominator. Some questions in Part A and all four questions 

in P

d. They were often unable to draw upon alternative strategies to 

complete the task em

middle gr ed to be

exte

amiliar fractional problems. They were less confident in challenging inappropriate

strategies but, when prompted, some were able to use alternative methods to check their 

reasoning.

A third group may be called Default whole number thinkers. These students more or 

less consistently, treat numerators and denominators in ways that ignore the fundamental

ratio betwe

art B identified clearly those in the third group whose thinking is best described as

default whole number thinking. These students were not asked to attempt Part C of the 

interview.

It was in Part C that Residual whole number thinkers experienced greatest difficulty. 

Unlike proficient multiplicative thinkers, they were unable to mount a challenge to the

scenarios presente

bodied in the scenario. To further investigate the thinking of this 

oup, the authors decided that the Probing Fraction Interview need

nded further.

 Findings from Further Probing of Whole Number Thinking 

To further investigate residual whole number thinking among Year 8 (14 year old) 

students, the authors interviewed eight Year 8 students from an all-boys metropolitan

secondary school where the Mathematics classes recently had been re-organised after the
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mid-year exam into three ability groups: upper, middle, lower. The students interviewed all 

came from the middle ability group, and were nominated by their teachers as being near

the

ct responses. The student who gave the

response to Task 2 (see Table 1) was eliminated because he appeared to be a 

owever, the remaining students were deemed by the 

ber thinkers. 

es

le correct response se

top of that group. Six girls from a co-educational metropolitan secondary school were 

also interviewed. These girls were also from classes that had also been organised according 

to test results and they were classified as being in the middle ability group.

All students were given four tasks from Part A of the Probing Fraction Interview to 

confirm that they were not default whole number thinkers. Thirteen of the fourteen

students were successful with the four tasks from Part A. Some incorrect responses, based 

on faulty arithmetic, were given by individuals for different tasks. Table 1 shows the four 

tasks and examples of both correct and incorre

incorrect

default whole number thinker. H

authors not to be default whole num

Table 1

Tasks and Examples of Respons

SampTask Sample incorrect respon

1. This is three-quarters of the

lollies I started with. 

many lollies did I start 

ith?

ne-quarter is 2, two-

quarters are 4 … so whole -quarters is one more

How

w

O

is 8 

The whole was 18 because

“three

than one-half. One half 

would be 12 so a whole is 

18.”

2.

Which of these pairs of 

ave

two-eighths as “1 goes

into 4, four times, and 2 

goes into 8, four times”.

he

fractions

quarter and two-eighths. You 

fractions are equivalent (h

the same value)?

One-quarter is equivalent

to

One-third and two-thirds 

were equivalent because “t

bottom is the same” but 

when asked if there were any 

other equivalent

said: “Then probably one-

can change it.” 

3. Point to the equivalent 

fractions. 10

3

  = 

21

box so

that the fractions are 

equivalent?

t fractions. e.g.

ow many times does 3 go 

into 21 (7) then multiply

10 by 7. 

A. C. who decided that

Write a number in the

Typically students used the 

rule to complete these 

equivalen

H

All were successful except 

10

3

was equivalent to 60

21

due

to a faulty algorithm.

4. Point to the cards:

2

1

4

1

10

1

5

2

0.1 0.4 

2

5

0.5 0.25 

Ma

equ

s from both

schools matched two-fifths 

with 0.4 because it was “just 

the one left”. 

tch each fraction with the

ivalent decimal.

A few student

3
After completing the initial four tasks the 13 students were then presented with three 

questions from a new Part D which asked them to compare three pairs of fractions
5

:  and 

2

3

1

4

2

8

1

3 3

2
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2

3
,

3

5
 and 

3

4
,

3

5
 and 

8

5
; and to use a number line, marked 0 to 1, to illustrate their thinking,

for one or more of these pairs.

Some students from both schools compared the pairs of fractions using equivalent

fractions using common denominators while others compared the pairs of fractions using

their decimal equivalents. For these students who converted fractions to decimals or

percentages the task became difficult as they were not always aware of the appropriate

equivalent of five-eighths. als or

percentage ember the 

per

nt when students

wer

“comparing-to-a-whole thinking

The students who attempted to use equivalent decim

s appeared not to have any other strategy to use if they could not rem

centage or decimal equivalent value instantly. 

Illustrations of Distinct Forms of Whole Number Thinking 

In Part D, several forms of whole number thinking became appare

e asked to choose the larger of two fractions. Students used either “gap thinking”, or 

”, or “larger-is-bigger thinking”. Examples used by eight 

students are presented here. The first two categories were easy to define. 

Gap thinking was evident when Student 1 was asked to compare
3

5
 and 

8

5
, and said: 

“Three-fifths is larger because there is less of a gap between the three and the five (in the 

firs

two-thirds was larger than three-fifths because “two-thirds had ‘one spare’ therefore it was 

t fraction) than the five and the eight (in the second fraction).” Student 7 suggested that 

bigger than three-fifths”. 

Comparing-to-a-whole thinking was demonstrated when, asked to compare
3

5
 and 

2

3
,,

Student 2 said that two-thirds was larger because: “Three-fifths is two numbers away from 

bein .

suggested that: “two-thirds was larger than three-fifths because three pieces are bigger than 

g a whole and two-thirds is one number away from being a whole” Student 5

five (pieces).”

Larger-is-bigger thinking took several forms. Initially, to compare 
2

3
 and 

3

5
, Student 3 

correctly converted the fractions to 
27

18
 and 

30

18
, but concluded that 

30

18
 was larger

because: “30 was larger than 27”. A different form of larger-is-bigger thinking was evident 

3

4
when Student 3 converted to

24

18 3

5
 and  to 

20

1

denomin to

2
 and then compared both numerators and

a rs to decide that
24

18
 was larger than 

20

12
 (c.f. Jennifer’s thinking). If he had 

used his earlier thinking on
3

4
 and 

3

5
, (same numerator, different denominators), he would

have chosen
3

5
.

Using Number Lines as a Further Probe

After responding to the previous tasks of comparing fractions students were asked to 

place a pair of fractions on the number lines marked zero to one. Some students from both
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schools just placed the fractions on the number lines without using any referents to other

known fractions, for example, one-half.

In some cases, students placed the fractions on the number line to reflect their previous

responses. For example, Student 6 randomly placed the fraction three-quarters close to one 

on the number line then placed three-fifths the same distance from three-quarters as she

had placed three-quarters from one. This was because, “three-quarters is only one away 

from a whole and three-fifths is two away from a whole (gap thinking)”.This was a similar

response to one given by a student from the other school. 

Stu

three-quarters using a number line. On the number line (below), he marked in 

three-fifths by dividing the line into fifths and marked the numbers one-fifth and three-

fifth

dent 5 divided a number line into four reasonably equal parts and marked correctly the

position for three-quarters. However when asked to show three-fifths she divided the line

into six parts and marked the midpoint as three-fifths. Further, to show the fraction five-

eighths, she marked another number line with eight marks, that is nine divisions, and 

marked the fifth one. These difficulties prevented this student from explaining her thinking 

Student 2 also applied comparing-to-a-whole thinking to three-fifths and five-eighths

arguing that the first must therefore be bigger because it is only two away from being a 

whole. Student 2 was then asked to think about two-thirds and three-quarters. His response:

“I think that they are equal. Not just because they are one away from being a whole. This 

(three-quarters) is 75% and two-thirds is about 75%”. He did not, when asked, have a 

strategy for checking. To further probe his thinking, Student 2 was asked to compare three-

fifths and

s. On the second number line, he marked in one-half, one-quarter and three-quarters by 

eye (quite accurately). He then concluded that three-quarters was bigger than three-fifths. 

He reiterated that three-quarters was 75% and used a calculator to show that three-fifths

was 60%. 

Secondly, to pare three-fifths and five-eighths, Student 2 proceeded to subdiv com ide

the

three-fifths as nine-fifteenths. To compare 

second number line from quarters to eighths, by eye (quite accurately). Having placed 

all the eighths, he then said: “Five-eighths is bigger. It is a bit ahead of three-fifths. My old 

approach (comparing-to-a-whole) doesn’t work”. To conclude, the interviewer asked him

to consider one-half and four-eighths. He said: “My old approach would say that one-half 

is bigger, but they are the same”.

To compare three-fifths and two-thirds, Student 4 said: “Both go into 15, and then 

represented two-thirds as ten-fifteenths and
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thre ”, using 

omparing-to-a-whole thinking. Student 4 then converted both fractions to the same

enominator (

e-fifths and five-eighths he initially said that “three-fifths is bigger by one

c

24

40
) and (

40

25
), and revised his first answer, saying that 

8

5
d  was larger.

To compare three-fifths and three-quarters, Student 4 correctly converted both fractions 

twentieths concluding that three-quarters was bigger. He was then invited to use number

nes to compare these two fractions. He divided the first number line (below) by eye into 

uarters and marked one half and three quarters. He then placed one-half on the number

line belo number line. He said that “three-fifths 

is sm

ight of one-half. The

inte

usion

 the early years of 

sec fractions. This whole

number thinking can be expressed in nt forms. It often becomes evident 

when students are asked to decide which of two fractions is greater.

teac ents to represent fractions on a number line

rs may be

which draw attention to inconsistent and incorrect thinking. This study, however, did not 

set out to explore remedial strategies with the students interviewed.

to

li

q

w corresponding to its position on the first

alle right of one-half and to the

left of three-quarters on the first number line.

r than three-quarters” and marked three-fifths to the

Interviewer: “Where would one-fifth be?”

Student 4: “One-fifth is more than one-half, I think.” 

Student 4 used a new number line and placed one-fifth to the r

rviewer then asked where he thought one-third and one-quarter would be on the 

number line. The student then placed these two fractions in between one-half and one-fifth 

as shown in the diagram below. Despite his apparent correct thinking in the previous 

example, Student 4 unexpectedly lapsed into larger-is-bigger thinking.

Concl

Despite their procedural competence with fractions, some students in

ondary school continue to exhibit whole number thinking about

several differe

It is vitally important to ask students to represent their thinking on a number line. The 

hing of checking strategies and asking stud

can assist some students to identify and correct their misconceptions. Unlike default whole

number thinkers whose thinking seems to embody quite serious and deep seated

misconceptions about fractions, the thinking of residual whole number thinke

more amenable to modification and self correction when they are presented with situations
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In the early years of secondary school, the research reported in this study points to the 

ortance of continuing to assist students to:imp

Beh

Kie

Nov

ea , M. & Lewis, G. (2002). Assessing Rational Number Knowledge in the Middle Years of

Schooling. In M. Goos & T. Spencer (Eds.), Mathematics making waves. Proceedings of the 19th
Biennial Conference of the Australian Association of Mathematics Teachers. CD-ROM. Adelaide:

AAMT.

Pearn, C. & Stephens, M. (2003). Success in Numeracy Education (Years 5 – 8): Probing Fraction Interview.
Melbourne: Catholic Education Commission of Victoria

Pearn, C. & Stephens, M. (2002a). Success in Numeracy Education (Years 5 – 8): Fraction Interview.

Melbourne: Catholic Education Commission of Victoria

Pearn, C. & Stephens, M. (2002b). Success in Numeracy Education (Years 5 – 8): Fraction Screening Test A.

Melbourne: Catholic Education Commission of Victoria

Pearn, C. & Stephens, M. (2002c). Success in Numeracy Education (Years 5 – 8): Fraction Screening Test B.

Melbourne: Catholic Education Commission of Victoria

Stephens, M. & Pearn, C. (2003). Probing whole number dominance with fractions. In L. Bragg, C.

Campbell, G. Herbert, & J. Mousley (Eds.), Mathematics Education Research: Innovation, Networking,
Opportunity. Proceedings of the Twenty-sixth Annual Conference of the Mathematics Education 

Research Group of Australasia (MERGA-26). Geelong, Victoria: MERGA.

Streefland, L. (1984). Unmasking N-distractors as a source of failures in learning fractions. In B. Southwell,

R. Eyland, M. Cooper, J. Conroy, & K Collis (Eds.), Proceedings of the Eighth International Conference

for the Psychology of Mathematics Education (pp. 142-152). Sydney: Mathematical Association of New

South Wales.

 make multiple representations of fractions using discrete and continuous quantities

 use a number line to represent accurately and to compare fractions

 check results and to estimate answers 

 inter-relate the different procedures used 

 deal explicitly with instances of incorrect fractional thinking.
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